Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry as a reliable proteomic method for characterization of Escherichia coli and Salmonella isolates
نویسندگان
چکیده
AIM Identification of pathogenic clinical bacterial isolates is mainly dependent on phenotypic and genotypic characteristics of the microorganisms. These conventional methods are costive, time-consuming, and need special skills and training. An alternative, mass spectral (proteomics) analysis method for identification of clinical bacterial isolates has been recognized as a rapid, reliable, and economical method for identification. This study was aimed to evaluate and compare the performance, sensitivity and reliability of traditional bacteriology, phenotypic methods and matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in the identification of clinical Escherichia coli and Salmonella isolates recovered from chickens. MATERIALS AND METHODS A total of 110 samples (cloacal, liver, spleen, and/or gall bladder) were collected from apparently healthy and diseased chickens showing clinical signs as white chalky diarrhea, pasty vent, and decrease egg production as well as freshly dead chickens which showing postmortem lesions as enlarged liver with congestion and enlarged gall bladder from different poultry farms. RESULTS Depending on colonial characteristics and morphological characteristics, E. coli and Salmonella isolates were recovered and detected in only 42 and 35 samples, respectively. Biochemical identification using API 20E identification system revealed that the suspected E. coli isolates were 33 out of 42 of colonial and morphological identified E. coli isolates where Salmonella isolates were represented by 26 out of 35 of colonial and morphological identified Salmonella isolates. Serological identification of isolates revealed that the most predominant E. coli serotypes were O1 and O78 while the most predominant Salmonella serotype of Salmonella was Salmonella Pullorum. All E. coli and Salmonella isolates were examined using MALDI-TOF MS. In agreement with traditional identification, MADI-TOF MS identified all clinical bacterial samples with valid scores as E. coli and Salmonella isolates except two E. coli isolates recovered from apparently healthy and diseased birds, respectively, with recovery rate of 93.9% and 2 Salmonella isolates recovered from apparently healthy and dead birds, respectively, with recovery rate of 92.3%. CONCLUSION Our study demonstrated that Bruker MALDI-TOF MS Biotyper is a reliable rapid and economic tool for the identification of Gram-negative bacteria especially E. coli and Salmonella which could be used as an alternative diagnostic tool for routine identification and differentiation of clinical isolates in the bacteriological laboratory. MALDI-TOF MS need more validation and verification and more study on the performance of direct colony and extraction methods to detect the most sensitive one and also need using more samples to detect sensitivity, reliability, and performance of this type of bacterial identification.
منابع مشابه
Two-dimensional liquid chromatography protein expression mapping for differential proteomic analysis of normal and O157:H7 Escherichia coli.
A multidimensional chromatographic method has been applied for the differential analysis of proteins from different strains of Escherichia coli bacteria. Proteins are separated in the first dimension using chromatofocusing (CF) and further separated by nonporous reversed-phase high-performance liquid chromatography (NPS-RP-HPLC) in the second dimension. A 2-dimensional (2-D) expression map of b...
متن کاملDiscrimination of Enterobacteriaceae and Non-fermenting Gram Negative Bacilli by MALDI-TOF Mass Spectrometry
Discrimination of Enterobacteriaceae and Non-fermenting Gram Negative Bacilli by MALDI-TOF Mass Spectrometry Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) has proven to be an effective identification tool in medical microbiology. Discrimination to subspecies or serovar level has been found to be challenging using commercially available identificatio...
متن کاملRapid, Sensitive, and Specific Escherichia coli H Antigen Typing by Matrix-Assisted Laser Desorption Ionization-Time of Flight-Based Peptide Mass Fingerprinting.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has gained popularity in recent years for rapid bacterial identification, mostly at the genus or species level. In this study, a rapid method to identify the Escherichia coli flagellar antigen (H antigen) at the subspecies level was developed using a MALDI-TOF MS platform with high specificity and sensit...
متن کاملMatrix-Assisted Laser Desorption/Ionization Time of Flight Mass-Spectrometry (MALDI-TOF MS) Based Typing of Extended-Spectrum β-Lactamase Producing E. coli – A Novel Tool for Real-Time Outbreak Investigation
Epidemiologically linked clusters are confirmed by typing strains with molecular typing such as pulsed-field gel electrophoresis (PFGE). We compared six extended-spectrum β-lactamase producing E. coli of a PFGE-related cluster with Matrix-assisted laser desorption/ionization-time of flight mass-spectrometry based typing that confirmed relatedness faster and more cost-effective, but as reliable ...
متن کاملApplications of Surface-Enhanced Laser Desorption/Ionization Time-Of-Flight (SELDI-TOF) Mass Spectrometry in Defining Salivary Proteomic Profiles
Recent advancement in mass spectrometry leads us to a new era of proteomic analysis. Human saliva can be easily collected; however, the complexity of the salivary proteome in the past prevented the use of saliva for proteomic analysis. Here we review the development of proteomic analyses for human saliva and focus on the use of a new mass spectrometric technology known as surface-enhanced laser...
متن کامل